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Growth of Ordered Domains in a Computer Model
Alloy with Lattice Misfit
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We study via Monte Carlo simulations the influence of elastic interactions on
the ordering and decomposition of a two-dimensional model binary alloy with
antiferromagnetic nearest and ferromagnetic next nearest neighbor type interac-
tions following a quench into the coexistence region. The elastic interaction
leads to the development of a platelet morphology for the segregated ordered
and disordered regions. A length scale characterizing the coarsening process
follows a law of the type R=a+bt1�3 with the growth b decreasing with the
amount of ordered phase; this appears to be due to the presence of anti-phase
boundaries between neighboring domains ordered on different sublattices which
are difficult to eliminate. The application of uniaxial external stress results in
``rafting'' of the domains. Many of the simulation results are in agreement with
experimentally observed effects in nickel-base superalloys.

KEY WORDS: Model alloy; Monte Carlo; elastic interactions; phase separa-
tion; kinetics.

I. INTRODUCTION

Precipitate micro structures are important for the strength and hardness of
many alloys.(1�11) A number of experimental(12�27) and theoretical(6, 28�41)

investigations have shown that the development of precipitate morphologies
is influenced by elastic interactions (EI) resulting from a lattice misfit
between matrix and precipitates and from an externally applied elastic strain.
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Thus, in Nickel base superalloys(22�26) cuboidal precipitates develop as
a result of EI.(21) These cuboids may join into large plates either spon-
taneously in the coarsening process or, more impressively, as a result of an
externally applied uniaxial stress. These processes are reasonably well
described by models where anisotropic elastic strains are incorporated into
the kinetics of a phase separating system.(6, 29, 31, 39�43) Such models include
continuum approaches as well as atomistic computer simulations. In par-
ticular, an Ising type model has been developed(35�38) which predicts the
growth of plate-like domains oriented perpendicular to the elastically soft
directions, in agreement with experiment. The model fails however to
reproduce some of the micro-structural details, (21) like narrow channels of
disordered phase effectively cutting the plates into a succession of cuboids.

It has been suggested(31) that these channels correspond to wetted
anti-phase boundaries (APB's) between variants of atomically ordered
precipitates. Such a proposal is very difficult to check experimentally since
variants of an ordered phase can only be distinguished in electron
microscopy by measuring large specimen areas using atomic resolution,
which is generally not possible. Similarly, the Ising model mentioned above
did not include the possibility of different atomically ordered domains and
cannot, therefore give an answer to this question. On the other hand, it is
well known that the precipitation of ordered domains inside a random
matrix is strongly influenced by the ordering tendency.(22�26) Simulations of
Ising models (not including EI) in which the ordered domains were of two
types gave a precipitate morphology strongly dependent on the volume
fraction of the disordered domain.(11) This can be interpreted as due to the
fact that the disordered phase has always a tendency to wet the surface of
the ordered domains.(11)

In the present work, we generalize the previous model(11) by including
EI resulting from a different size of the two types of atoms. We then study,
via computer simulations, the influence of the ordering tendency of the
precipitates on the domain structure and the kinetics both without and
with external stress (rafting).

II. THE MODEL

We consider a system consisting of NA atoms of type A with radii RA

and NB atoms of type B with radii RB . The positions of the atoms are
labeled by sites on a planar square lattice L with lattice spacing a. There
are N=L2 sites (N=NA+NB) and we use periodic boundary conditions.
A spin variable #(p) is assigned at each site p # L, with #(p)=1 if there is
an A-atom at site p and #(p)=&1 if there is a B-atom there. The atoms,
which can move off the lattice sites, are connected by elastic springs with
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longitudinal (L+) and transverse (T+) stiffness between nearest neighbors
and springs with longitudinal stiffness (L_) between next nearest
neighbors. The different sizes of the atoms cause a lattice distortion, as dis-
cussed in refs. 35�38. There is also a short range ``chemical interaction,''
Hchem , between the atoms corresponding to anti-ferromagnetic (AFM)
nearest and ferromagnetic (FM) next nearest neighbor potentials.(11) This
has the form of an Ising Hamiltonian:

Hchem=J :
p # L

:
j=1, 2

#(p) #(p+ae j )

&
J
2

:
p # L

:
j=&1, 1

#(p) #(p+a(e1+ je2)), J>0 (1)

where e1 and e2 are unit vectors in horizontal and vertical direction,
respectively.

An energy minimization over the atomic displacements for a given
configuration can be performed as in refs. 47, 48, 35�38 and the resulting
total Hamiltonian is then given by:

Htot=
1

2N
:

k # BZ

9� (k) |#~ (k)| 2=
1

2N
:

p, p$ # L

9(p&p$) #(p) #(p$) (2)

where #~ (k) and 9� (k) are the Fourier transforms of #(p) and the effective
pair potential 9(p&p$) respectively,

#~ (k)=:
p

#(p) eik } p; 9� (k)=:
p

9(p) eik } p

and the sum over k in (2) is taken over the first Brillouin zone of the lattice L.
The effective potential 9(p) contains a long range anisotropic elastic

part 9 eff
el (p) which has a form similar to a dipole�dipole interaction and

decays like r&2 (r&3 in 3 dimensions) at large distances r. It also contains
a short-range part 9sh(p) which has contributions from both the chemical
and the elastic interactions. In Fourier space the potential 9� (k), which is
the sum of 9� sh(k)+9� eff

el (k), can be calculated explicitly; see refs. 35�38:

9� sh(k)=2J {c1+c2&c1 c2+
1
4

*0� = (3)

9� eff
el (k)=&

1
2

*J
D� 22G� 2

1+D� 11 G� 2
2&2D� 12G� 1 G� 2

D� 11D� 22&D� 2
12

(4)
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Here i # [1, 2], ci=cos aki , and si=sin aki , k1 and k2 being the com-
ponents of the vector k along the x and y directions of the square lattice,
*=(RA&RB)2�J,

0� = :
2

i=1

[(1&2:=0
ii)(1+ci ) L++[1&:(=0

11+=0
22)](1+c1c2) L_]

and

G� i=si (1&:=0
ii) L++[c3&isi (1&:(=0

11+=0
22)�2)&cis3&i:=0

12 �2] - 2 L_

D� ij=$ ij[(1&ci ) L++(1&c3&i) T++(1&c1c2) L_]+(1&$ij ) s1 s2L_

where =0
ij is the (i, j)-component of the strain tensor and :{0 corresponds

to non-zero external stress, see refs. 37 and 38.

A. Computer Simulations

For the numerical simulations, we chose(37, 38)

*B=2, L+ �B=0.48, L_ �B=0.68, T+ �B=&0.16

where B is the bulk modulus of the material, introduced here in order to
make the above parameters dimensionless. A purely external stress =11 in
the x-direction corresponds, as shown in refs. 37 and 38, to setting

=0
12=0 and =0

22=&
C 0

12

C 0
11

=0
11=&

L_&T+

L_+L+

=0
11r&0.724=0

11 (5)

For simplicity we also define `=:=0
11 . `<0 corresponds to compressive

stress in the x-direction, `>0 corresponds to tensile stress in the x-direc-
tion. In the computer simulations we studied the cases `=0 and `=0.1.
An approximate phase diagram of this system with energy (1), i.e., in
the absence of EI's, is shown in Fig. 1. The Monte Carlo simulations by
Landau(44, 45) for the model without EI show that the phase diagram con-
tains a tricritical point at a tri-critical concentration close to a value at which
half of the system is ordered and the other half is disordered. As discussed
by Kincaid and Cohen, (46) the corresponding mean field theory provides a
phase diagram with a critical end point instead of a tricritical point for the
interaction parameters chosen in the present study. The precise location of
the phase coexistence boundaries and the critical line is the topic of a
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Fig. 1. Schematic equilibrium phase diagram (concentration c of A atoms vs. temperature T )
for the model A�B alloy, full squares: A-atoms, open circles: B-atoms. The full circles show
the conditions at which our MC simulations were performed.

separate study. However, guided by the results of refs. 35 and 36 for the
case with FM- and elastic interactions, we expect only relatively small
quantitative modifications of the phase diagram of the system without EI,
say an increase of the tri-critical temperature of order 100, due to the
added EI's used here.

Computer simulations were performed mainly on a 128_128 lattice at
a temperature, T=T is

c �4r0.567J�kB , (T is
c is the critical temperature of the

two-dimensional nearest-neighbor AFM Ising model) with (`=0.1) and
without (`=0) external stress. Three ``alloys'' with concentration of (large)
A-atoms c=NA�N=0.15, c=0.25 and c=0.35 were considered. These are
all well within the two-phase region between the ordered inter-metallic
alloy with stoichiometric composition AB and the disordered B-rich phase;
corresponding approximately to volume fractions of the ordered phase
f =0.3, 0.5 and 0.7, respectively. The simulations were performed using the
algorithm described in refs. 35 and 36. In essence, it amounts to the
Metropolis algorithm with Kawasaki dynamics: a nearest neighbor pair is
chosen at random and if the exchange of the pair leads to a decrease in
total energy, then the exchange is performed, but if it leads to an increase
$E, it is only done with probability exp(&$E�kT ). One Monte Carlo step
(MCS) consists of one attempted update of every lattice site. Since the
interaction potential is long-range, a special updating procedure (described
in ref. 35) was used.
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III. RESULTS AND DISCUSSION

A. Characterization of Configurations

Since there are two sub-lattices within the ordered ``anti-ferromagnetic''
structure on the square lattice, there will also be two possible variants for
the ordered phase, one where the A-atoms are on the even sub-lattice
(which we call for short the even variant) and one where the A-atoms are
on the odd sub-lattice (odd variant). To represent ``snap-shot'' pictures of
the configurations in a way that clearly differentiates between the two
variant ordered phases as well as the disordered phase, we put a solid
square at an even site occupied by an A-particle and an open circle at an
odd site occupied by an A-particle. The sites occupied by the B-particles
are left empty see Fig. 2.

We define the short range order parameter 'sr ,

'sr=
1
2

&
1

4N
:

p # L

:
j=1, 2

#(p) #(p+aej ) (6)

and the long range order parameter 'lr ,

'lr=
1
N

:
p # L

#(p)(&1) p1+ p2 (7)

'sr represents the relative amount of the ordered phase, irrespective of
whether the order corresponds to the odd or the even variant, while 'lr is
the global average of the staggered spin variable and corresponds to twice
the difference in the concentration of A-atoms on the odd and the even
sub-lattice.

Our first observation is that the short-range ordering of the domains
takes place quite rapidly. We find that |'sr �2c&1|<10&2 after 103 MCS.
To characterize the decomposition kinetics, we use the structure function

Sk =
1
N } :

p # L

exp(ik } p) #(p) }
2

(8)

where k=(k1 , k2) is a reciprocal lattice vector, with kj=2?Kj �La and
Kj=1, 2,..., L for j=1, 2. For a system undergoing both ordering and
decomposition, the structure function is concentrated in two areas, around
the point (?�a, ?�a) (related to ordering) and around the point (0, 0)
(related to decomposition) of reciprocal space. Note, that S(0, 0)=
N(1&2c)2 and that S(?, ?)=N'2

lr .
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Fig. 2. Configurations after 20000 MCS for c=0.15 (a), c=0.25 (b) and c=0.35 (c) and
after 100000 MCS for c=0.15 (d), c=0.25 (e) and c=0.35 (f ). c=0.25 is the (approximate)
tricritical concentration. The symbols show the occupancy of the even sites (full symbols) and
of the odd sites (open symbols) by the particles with positive spins. There was no external
stress applied (`=0).
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Fig. 3. Decomposition of the first Brillouin zone into 00 (grey area) and 0? (white area)
centered around k=(?�a, ?�a) (a) and around k=(0, 0) (b). The dashed lines in (c) and (d)
sketch the k-space decomposition around k=(?�a, ?�a) (c) and around k=(0, 0) (d) according
to Eq. (16).

To study the kinetics and scaling properties of the two processes we
divide as in ref. 11 the (square shaped) Brillouin zone in reciprocal space
into two regions of equal area (see Fig. 3): a diamond centered at (0, 0)
describing decomposition,

00=[k: |k1 |+|k2 |�?�a] (9)

and a region consisting of four triangles. Under the periodicity of the
reciprocal lattice the points of the latter region are together equivalent to
a second diamond-shaped region 0? in reciprocal space centered around
(?�a, ?�a),

0?=[k: |k1&?�a|+|k2&?�a|�?�a] (10)
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describing ordering. To test scaling behavior of the structure function, we
average it over directions within the two squares 0& related to ordering
(&=?) and to decomposition (&=0), separately. We define:

S&(k)= :
2&(k)

Sk$< :
2&(k)

1 (11)

where

2&(k)=[k$: k&$k<|k$&(&, &)�a|�k+$k] (12)

is a ring of width 2$k, $k=?�La, and median radius k=|k|=(k2
1+k2

2)1�2

=2?K�La, K=1, 2,..., [L�2 - 2]. Since the configurations on the lattice are
evolving with time, we are also using the notation S&(k, t) for the direc-
tionally averaged structure function computed from the configuration at
time t.

The scaling hypothesis for the late stages of coarsening, in systems
undergoing either phase segregation or ordering, is that the system is
characterized by a single length scale *(t). This means in particular that for
values of k&1 which are large compared to the lattice spacing and small
compared to the size of the system S(k, t) should (up to a time dependent
factor) be a function of only one variable, *(t) k. In our case we need a
priori two characteristic lengths, *&(t), &=0, ?. We therefore hypothesize
that for the system under consideration

S� &(k, t)rd&(t) F&(k*&(t)) as t � � (13)

where S� &(k, t) is, for fixed k{0, the macroscopic (formally the infinite
volume) limit of the corresponding directionally averaged structure func-
tion at time t:

S&(k, t) � S� &(k, t) as L � � (14)

To test the generalized scaling hypothesis (13) we defined, following
common practice for systems in which there is only one scaling length,

*&1
& (t) 2?#k&(t)=:

k

kS&(k, t)<:
k

S&(k, t), k=2?K�La (15)

The results are shown in Fig. 4(a) and (b). For times greater than 2_104

the growth of these length scales is well described by a time evolution of
the type: *&=a&+b&t1�3, see below. Due to the EI the ordered domains are
oriented preferentially parallel to the coordinate axis. In order to quantify
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Fig. 4. Inverse first moments of the structure factors around (0, 0) and (?�a, ?�a), *0 (a) and
*? (b) versus t1�3. The slopes of the fitting lines in (a) are: b0 �a=0.14, 0.12, 0.1 (from top
to bottom), the slopes of the lines in (b) are: b? �a=0.22, 0.18, 0.17 (from top to bottom).
(c) shows the anisotropy factors A0 and A? versus t1�3 (in units of MCS) for different concen-
trations. A&=0 corresponds to an isotropic situation and A&=1 corresponds to a situation
where the structure factor is concentrated on the kx=0 and the ky=0-lines.
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the amount of anisotropy in the resulting structure factor we divide the
k-space around (0, 0) and (?�a, ?�a) into eight regions |I

& , (I=1, 2,..., 8),
which are centered around the diagonals and the axes (see Fig. 3):

|I
& :={k: |ak&(&, &)|<

?

- 2
, &

3?
8

+I
?
4

�arc tan
ak2&&
ak1&&

�&
?
8

+I
?
4= ,

I=1, 2,..., 8 (16)

The contributions of the structure factor in the regions around the axes
(odd I ) is weighted by a ``+'' sign, and from the regions around the diago-
nals with a ``&.'' The sum of these terms gives the anisotropy factor A& :

A&= :
8

I=1

(&1)I _:
|&

I

Sk<:
|&

I

1& (17)

For spherically symmetric structure factors, A&=0; in the case of ordering
with structures parallel to the coordinate axes, A&>0.

B. Domain Morphology

We consider now the domain morphology and the growth kinetics of
the system for choices of the temperature and concentration, which place
the system well below the tricritical temperature in the coexistence region.

As already noted, the first stage of the kinetics is given by a fast order-
ing in small domains on the even and odd sub-lattices. Typical configura-
tions after 20000 MCS are shown in Fig. 2 (a)�(c) for c=0.15, c=0.25 and
c=0.35. Configurations after 100000 MCS are shown in Fig. 2 (d)�(f ) for
the same parameters as in Fig. 2 (a)�(c). Due to the coarsening process the
ordered domains have grown. For the two small concentrations the growth
in the long direction has partly stopped where domains which are ordered
on different sub-lattices collide. An APB blocks further growth of the
domains. For c=0.35, 700 of the lattice sites are parts of ordered
domains. Here many APB's appear already at an early stage of the decom-
position which slow down the dynamics. The presence of these narrow
channels subdividing the plates (or stripes) in sub-domains is a difference
to the situation of the FM case with EI's.(37, 38) Such channels are typically
observed in nickel base superalloys where the precipitates are ordered.(21)

In the present model neighboring sub-domains are ordered on a different
sub-lattice which means that the narrow channels are, in fact, wetted
APB's. This is in good agreement with Khachaturyan's assumption.(31)
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In Fig. 4 we show the corresponding length scales *0 for the decom-
position and *? for the ordering as a function of the time. *? is always
larger than *0 , *0 decreases with the concentration, whereas *? increases
with c. To explain this behavior we note that for the higher concentration
the ordered domains contain more particles than for smaller concentrations
and thus *? , which is a measure for the average size of the ordered
domains, is increasing with the concentration. On the other hand, due to
the increase in APB area the decomposition process is hindered with
increasing concentration. Thus *0 , which is a measure for a typical ``wave
length'' of the separated regions in the system, is decreasing with c. This is
again in contrast to the FM case, (37, 38) where a concentration c and 1&c
of a given phase are equivalent. However, a monotonic dependence on the
amount of ordered phase had also been found in the AFM case without
EI's.(11) It is, therefore, very likely that the slowing down of the kinetics
with increasing amount of ordered phase is related to the presence of
APB's which are not very mobile. All length scales, however, can be well
described by a linear dependence on t1�3, which may be due to the increas-
ing width of the structures which is not affected by APB's as much as the
growth in length. The wide channels between neighbouring stripes were
already found in the FM case with EI's(37, 38) and are probably due to an
effective repulsion of the stripes due to the EI. This also means that
neighbouring ordered stripes are not necessarily on different sub-lattices.
The growth in thickness is, therefore, unrelated to APB's and similar in the
FM and AFM case.

The anisotropy of the structure factor is shown in Fig. 4c. For &=0
(open symbols), it reflects the stripe-like character of the domains induced
by EI. In agreement with previous simulation work on the coarsening of
(non-ordered) domains under the influence of EI, (36) the anisotropy is
largest for an equal amount of the two phases. This shows that��while
being crucial for the kinetics of coarsening��the atomic ordering in one of
the phases has only a small influence on the development of domain shape
anisotropy. This is emphasized by the fact that the ordering parameter (as
measured by the structure function close to &=?) shows only little
anisotropy (Fig. 4c, full symbols).

In order to analyze the difference between the structure of the ordered
and the disordered regions for lattice fractions which are symmetric about
c=0.25, we show in Fig. 5(a) configurations after 100000 MCS for c=0.35,
where 700 of the particles are in ordered regions. In this figure the
ordered regions are plotted white and the disordered black. For com-
parison with this situation we show configurations for c=0.15 in Fig. 5(b)
and (c), where 300 of the particles are in ordered regions. In order to
make visible the differences of the domain structure in the three cases, the
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Fig. 5. (a) corresponds to the situation of 700 ordered phase and 300 disordered phase,
full symbols show the disordered domains for c=0.35 after 100000 MCS after which
*0=13.4a, (b) corresponds to the situation of 300 ordered phase and 700 disordered phase
after the time as in (a), the full symbols show the ordered domains for c=0.15 after 100000
MCS, (c) corresponds to the same situation as in (b) but after a time (10000 MCS), where
the domains size is the same as in (a) (*0=13.3a).
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ordered regions in (b) and (c) are shown in black and the disordered
regions white. In Fig. 5(b) the same number of MCS has been considered
as in (a), and in (c) a configuration has been selected, for which the charac-
teristic length scale *0 agrees with the value in (a). In both figures, (b) and
(c), the morphologies of the ordered domains differ significantly from the
morphology of the disordered domains in (a). Such an effect has been
previously found in a model with AFM ordering(11) but no EI and was
assumed to be due to APB's between ordered domains on different sub-lat-
tices, wetted by the disordered phase. In the present case, a similar wetting
of APB's was observed.

C. Growth Kinetics and Scaling

The two characteristic length scales related to ordering and decom-
positions, *&(t), have been computed using Eq. (15). Figures 4(a) and (b)
show that for times greater than 2_104 the growth of these length scales
is well described by a time evolution of the type:

*&=a&+b&t1�3 (18)

Despite the fact that the structure function showed considerable aniso-
tropy, we considered a scaling hypothesis for the directionally averaged
structure function (where the anisotropy has vanished due to averaging) in
the form

S&(k, t)rB&k&(t)&2 F&(k�k&(t)) (19)

where 2?�k&(t)=*&(t)=a&+b& t1�3. A standard way to choose the constants
a0 and B0 is to require that the scaling function F0 satisfy the normalization
condition max[F0(x)]=F0(1)=1. This permits comparison of charac-
teristic parameters at different concentrations.

In Fig. 6 we show the scaling plots of F0 for the directionally averaged
structure factor S0(k, t), where the free coefficients have been chosen such
that the maximum of F0 is at x=1 and F0(1)r1. For all three concentra-
tions we find a reasonably good scaling behavior, supporting the scaling
hypothesis.

Several interesting features of the directionally averaged structure
function are visible in Fig. 6. First, in Fig. 6a and��more prominently��in
Fig. 6c a shoulder or secondary maximum is visible around x=2. This can
be interpreted as a second order of the main peak at x=1(36) and results
from a degree of ordering in the spatial distribution of the domains con-
siderably higher than in phase separation without EI, where such a
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Fig. 6. Spherically averaged structure function for decomposition rescaled with *0 , F0(k�k0)
for c=0.15 (a), c=0.25 (b) and c=0.35 (c). Note the shoulders around x=2 in (a) and (c).

37Growth of Ordered Domains in Computer Model Alloy



secondary maximum does not usually occur.(10, 11) For the same reason, the
main peak at x=1 is narrower than in cases without EI. This last effect is
even more pronounced for the symmetric alloy composition (c=0.25, see
Fig. 6b). Despite this, there is no secondary maximum in this case. As dis-
cussed earlier, (36) this occurs because in a succession of stripes with equal
thickness, all even (and, in particular, the second) order peaks are sup-
pressed. This does not occur in Fig. 6a and 6c, because the ordered and
disordered domains have different thickness (due to the asymmetric com-
position, see Fig. 2).

D. Rafting

Directional coarsening (``rafting'') is a well-known phenomenon,
observed when alloys containing misfitting precipitates are subjected to
uniaxial external load. Morphologies with plate-like structures perpendi-
cular or rod-like structures parallel to the stress directions may develop.
This phenomenon has been studied by experimental methods as well as
with MC simulations. In the latter(37, 38) a ferromagnetic interaction has
been considered which does not lead to ordering on different sub-lattices
and APB's discussed in the present work.

We studied the influence of uniaxial external tensile stress in the
x-direction (`=0.1) on the morphologies. In Fig. 7 we present the resulting
configurations 100000 MCS after a quench into the coexistence region for
different concentrations of the A-particles. As in the case with FM interac-
tions(37, 38) the ordered domains align parallel to the x-axis. The structures
may consist of ordered domains extending over the full length of the
simulation box or may consist of domains ordered on different sub-lattices
intersected by APB's. Independent of these structural details, for small con-
centrations c (see Fig. 7 (a) and (b)) these structures contain a ``waviness''
similar to the phenomenon found in the study with FM interaction. For
larger c (see Fig. 7(c)) the ``waviness'' is less pronounced since neighboring
ordered regions in y-direction have smaller average distances compared to
the case with smaller c-values, consequently either compact ordered
domains are formed which are separated by horizontal disordered stripes,
or APB's appear in y-direction, both effects hinder the appearance of wave-
like structures.

IV. CONCLUDING REMARKS

In this paper, we studied the coarsening of anti-ferromagnetically
ordered domains under the influence of elastic misfit interactions with and
without externally applied uniaxial stress.
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Fig. 7. Configurations due to rafting with uniaxial external tensile stress in x-direction
(`=0.1) after 100000 MCS with a random solution as a starting configuration for c=0.15 (a),
c=0.25 (b) and c=0.35 (c). Full symbols show the occupancy of the even sites and open sym-
bols the occupancy of the odd sites by the particles with positive spins.
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v As expected, the EI led to the development of a platelet morphology
consisting of two types of ordered domains (differing by a phase) and a
disordered domain.

v Characteristic lengths associated to these domains follow a law of the
type R=a&+b&t1�3 with &=0, ? referring to decomposition and ordering
structure functions.

v We observed the presence of narrow channels subdividing the
ordered plates (or stripes) into sub-domains. Such channels are typically
observed in Nickel base superalloys where the precipitates are ordered.
It was commonly found that neighboring subdomains are ordered on a dif-
ferent sub-lattice which means that the narrow channels are, in fact, wetted

Fig. 8. (a) Transmission electron microscopic image of Ni-Al-Mo alloy with Mo-composi-
tion chosen such as to make the lattice spacing in the precipitates (gamma-prime phase)
smaller than in the disordered matrix (misfit &0.50). Treatment: 5h at 1253 K (Orientation
001). One observes cube-like precipitates, aligned along the elastically soft directions, [010]
and [100] (From ref. 21). (b) Data from Fig. 2f replotted with the convention that the dis-
ordered phase is shown black, while both variants of the ordered phase are shown in white.
(c) Transmission electron microscopic image of the same Ni-Al-Mo alloy as in (a). Same
thermal treatment as in (a) but now with a external compressive load of 130 MPa applied to
it along the vertical [010]-direction. (From ref. 21). (d) Data from Fig. 7c replotted with the
same convention as in (b).

40 Nielaba et al.



APB's. This is in good agreement with Khachaturyan's ideas.(31) We believe
that the APB's are responsible for the morphology with 300 ordered
phase in the disordered matrix being quite different from that with 300
disordered phase (Such an effect was also found earlier in this AFM model
with no EI but is absent in FM systems.) In fact the main difference in the
kinetics and morphologies, between the present AFM model and the pre-
viously studied FM ones appears to be due to the presence of the APB.

v Since these APB's only disappear when two of them meet and
annihilate, it is very difficult for neighbouring sub-domains to join up into
a single domain. Hence, the growth kinetics is hindered by the presence of
the APB's and this is responsible for the coefficient b0 and thus the average
domain size was found to decrease monotonically with the amount of
ordered phase (varying from 300 to 700).

v The wide channels between neighbouring stripes also found in the
FM case are probably due to an effective repulsion of the stripes due to the
EI. This means that neighbouring ordered stripes are not necessarily on
different sub-lattices. The growth in thickness is, therefore, unrelated to
APB's.

v The effect of uniaxial external stress is to cause ``rafting'' of the
domains. The APB's cause the stripes to be segmented.

v Finally we mention the great similarity between the morphologies
obtained from our simulations and those obtained from experiment
(despite the great difference in scales) once the distinction between the dif-
ferently ordered subdomains (not distinguished in the experiments) is
removed from the simulation output; see Fig. 8. This compares our data
with transmission electron micro-graphs of Ni-Al-Mo alloys annealed with
and without external stress.
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